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Evolving networks with disadvantaged long-range connections
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We consider a growing network, whose growth algorithm is based on the preferential attachment typical for
scale-free constructions, but where the long-range bonds are disadvantaged. Thus, the probability of getting
connected to a site at distandés proportional tad™ ¢, wherea is a tunable parameter of the model. We show
that the properties of the networks grown with<1 are close to those of the genuine scale-free construction,
while for «>1 the structure of the network is quite different. Thus, in this regime, the node degree distribution
is no longer a power law, and it is well represented by a stretched exponential. On the other hand, the
small-world property of the growing networks is preserved at all valuas. of
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Complex weblike structureghe small-world or scale-free cal aspect. In what follows, we present a simple model tak-
networks have recently become an object of extensive in-ing into account this metricalgeographical aspect, where
vestigation, and in recent years great success in understaniie probability of connecting two nodes depends both on the
ing the properties of these structures has been achi@esd number of connections that the nodes already lagen the
Refs.[1,2] for a review. Apart from appealing mathematics, genuine SF constructipnand on the distance between them.
this recent interest is due to the fact that many natural andhat is, we treat an emerging network in a metric space. In
technological systems, such as polymer netwd®s the this emerging network the probability that a newly intro-
science collaboration network4—6], and networks of duced nodenis connected to a previously existing nodis
chemical reactions in a living cell7—9] seem to be orga- Proportional to the numbeg of the already existing connec-
nized according to some internal principles. Thus, the Intertions of nodei (preferential attachment prescriptjoiut, on
net[10], the network of human sexual contaftd], and the the other hand, the too long bonds are disadvantaged, be-
WWW [12] possess similar structures, e.g., they are all basegause this probability depends on the Euclidean distapce
on the preferential attachment of the newly introduced nodebetween the nodes andi asd;,*, (clearly, a “scale-free”
to the highly connected old ones. All these networks showunction), with &>0.

the small-world property: the typical distan@e terms of the Based on extensive numerical simulations of a one-
number of intermediate connectignbetween two nodes dimensional situation, we show that even if the length pen-
grows logarithmically with the web’s size. alties are mild, the model exhibits properties that differ

One of the prominent examples of a mathematical mode$trongly from those of the usual scale-free networks. Thus,
of such a growing network is the scale-f€&&F) construction the corresponding degree distribution funct®(k) depends
of Albert and Barabsi[1,2,13; and one of its most interest- strongly on«. We show, in particular, that fow<1 the
ing properties is the very specific form of the probability behavior ofP(Kk) is similar to the behavior of the SF model
distribution of the degrek; of nodes(i.e., of the number of  without penalties, so that asymptoticalfk) k2 (a distri-
bonds connecting any given nodewvith other ones in the bution that possesses a mean, but no dispersion, and corre-
network: P(k)ock 3 [1,2,13-16. Many models have been sponds to strong, universal fluctuatipn®n the other hand,
presented, based on the same two most important ingredier «>1 the behavior ofP(k) is well described by a
ents: growth and preferential attachment. Examples are modtretched exponentid® (k) xexp(—bk”), with the powery
els with an accelerated growth of the netwpil,18, mod-  depending onv, so that the fluctuations ikare rather weak.
els with a nonlinear preferential attachmégh6], with nodes We discuss the reasons for such a dramatic change, being
provided with an initial attractivenedd 4,19, with growth  rooted in the probability of the connection between the nodes
constraints as aging and cd0,21, models that have a as a function of the distance, and the overall structure of the
competitive aspect of the nodg22], or models of networks emerging network, preserving its small-world nature even at
that incorporate local events as the addition, rewiring, or retarge (probably at all « values.
moval of nodes or edgd23]. We start from a one-dimensional lattice lokites, spaced
The SF construction may be a reasonable approximatioby a unit distance, and apply cyclic boundary conditions. We
for such world-spanning networks such as one of the Interwill let our network grow on this structure, so that each
net’s information transmission channels or one of the formalattice site will be a possible location of a network’s node.
links of the WWW. On the other hand, in many situatidéas ~ We denote byn; the position in the lattice of a node The
in a network of human sexual contacts connection means  distanced;; between any two nodésandj is defined as
a physical contact, i.e., that the contacting individuals, rep-
resenting the nodes of the network, have to occur at the same
site and at the same time, thus introducing a clear geographi- dij=min{|n;—n;|,(L—|n;—n;)}. D
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FIG. 1. Networks generated
using the simulation prescription,
Eq. (2), with different values otx:
(@ a=0, (b) @a=1.5, and(c) a
=15. All three examples have 300
edges,L=10°, N=105, andm
=3. Note the change in the ap-
pearance of the networks. The net-
work (a) is a genuine SF construc-
tion while (c) strongly resembles
the Watts and Strogatz small-
world network.

Let us now construct the network. First, we choose ran-(a) corresponds to a genuine scale-free construction and ex-
domly an even numbeamn, of sites from the lattice and we hibits a lot of long bonds connecting distant sites. On the
bind them in pairs with one bond each. This will be our other hand, only few such bonds are present in Fg). 1

initial condition. That is, at=0, our network will consist of In our further simulations we use a lattice lof=2x 10
mg nodes connected in pairs. As in the SF model, we willsites; the maximum number of the introduced noded is
add at every time step a new node to our netwgihear =2x10°. All simulation results are based on the average

growth). We proceed according to the following rule: at ev-

ery time step, we choose at random a free site of our lattice 1 F— A L E— T
and pose the new node there. This new node is then con i
nected throughm edges th<my) with m different nodes 1071 N 3
already present in the network. Aftetime steps the algo-
rithm results in a network withh+m, nodes andnt+mg/2 1072¢ 9
edges. In contrast with the SF model, the probabilltyfor Pik)
the new noden to be connected to an old omevill depend 1073 9
not only on the number of edgds, whichi already pos-
sesses, but also on the distamgg between them, 10-4| ]
ki-d. -« -5 i
M(k; Gy ) = ———. 2 v
Ei: k- djn” 10-S | 9
Here the sum in the denominator goes over all nodes in 1

the system except the newly introduced one, and a real
non-negative parameter describing the distance penalties. F¢
large «, the probability of a connection between two distant L
nodes is very small. On the other hand, for a very smdhe
probability is almost independent of the distance. In the case 107
a=0, our model reduces to the genuine scale-free one. Nott

that our model is to some extent also scale-free: the connec  107F

tion probabilities depend only on thelative distances. P(k)

Our initial condition is slightly different from that of 1073 £
Barabai and Albert, where the initiah, nodes are not con-
nected: in our case all nodes introduced-ab have exactly 1074E e

one edge, which allows us to use Eg) from the very be-
ginning. This simplifies the algorithm, since we do not have  19-5t
to distinguish between the initial and the further steps. The
only difference with the genuine SF construction is that at 16|
time t one hasmt+my/2 (instead ofmt) edges present;
hence, the asymptotic behavior of both modelstfere is 1 1
the same.

~ Three examples of the evolving networks of this kind are £ 2. The degree distributioR(k) for different values ofa
given in Fig. 1. Heren=3, L=10°, N=105, andmy=6 (SO and for m=1 (a) and m=3 (b). The values ofa are a=0
that all three networks have exactly 300 edg&éree differ-  (squares a=0.8 (crossel a=1.5(triangles, «=2 (filled circles,
ent values ofa were used:a=0.0 (scale-free mod@l @  4=5 (plussey and a=45 (diamonds. The dashed lines corre-
=1.5 anda=15.0. Note that increasing the value®feads spond to the theoretical curve for the scale-free modekfs.
to marked changes in the topology of the network. Figurg1,2,13).
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FIG. 3. Shown is IPP(k) as a
function ofk”, wherevy is the out-
put of the fit, Eq.(3) (see text for
detaily. The parameters ar¢a)
m=1, =15, y=0.37; (b) m
=3, a=1.5, y=0.33;(c) m=1,
a=3, y=0.69;(d) m=3, a=3,
v=0.64; () m=1, =10, vy
=1.07; and(f) m=3, «=10, vy
=0.96.
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over ten realizations of this structure. The error bars on Figs. One of the prominent features of the scale-free model is

3-5 correspond just to this ensemble average. The simuldhat the distribution of the degrees of the nodes decays as a
tions are done for several values @fand for two values of power law, i.e., a®(k)~k™?, with y=3. This corresponds

m, the number of the outgoing bondsi=1 andm=3; my  to the fact that the mean number of connections per site

=2m. exists, but its dispersion diverges. Let us discuss now how
1.2 T T T T T T T
1 - e =-=]
08 | _
Y .
FIG. 4. The parametey as a function ofa.
06 | 1% . The upper dependence correspondmtel, and
4 the lower one tan=3. The lines are drawn as a
i guide for eyes.
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FIG. 5. The diameter of a network as a function of the number
of sitesN. Panel(a) corresponds tax=1.5 and panelb) corre-
sponds taw=5. The upper lines in each panel are thosenfier 1,
the lower lines correspond tm=3. Note the logarithmic scale.
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obtain the values of these parameters and to analyze the
goodness of this fitting function, we have fitted the data to
Eq. (3) using the nonlinear least-squares Levenberg-
Marquardt algorithnj24], taking into consideration the error
bars as coming out of ten realizations of each situation. The
data is replotted together with the outcomes of the fits in Fig.
3 on the scales in which the fitting function, E8), is rep-
resented by a straight line. One takésas the abscissa and

In P(k) as the ordinate of the graph. Figure 3 shows that such
a fit (straight ling is surprisingly good.

The values of the exponent are shown as a function of
a (a>1) in Fig. 4 for the two different situations corre-
sponding tom=1 andm=3. We see thaty monotonically
grows with @, and that the dependences fo=1 andm
=3 differ, i.e., they(a) dependence is nonuniversal.

We note that in related models of growing networks an-
other form of degree distribution appears: an exponentially
damped power la25],

P(k)=ak”exp —bk). (4)

We also tested this fit function and found out that it gives
a good fit for larger values, but is definitely inferior to our
fit, Eq. (3), for 1<a<3.

A growing network with disadvantaged long bonds is a
very interesting hierarchical construction. Thus, for latge
the strong correlation between the age of the connection and
its length exists. The old connections, made when the nodes
were sparse, are typically long, while the younger connec-
tions get shorter and shorter, since more sites in the immedi-
ate vicinity of a newly introduced site can be found. The
simulations show that for a large value @f the nodes are
almost surely connected to their nearest neighbors. On the
other hand, the old, long-range connections are of great im-
portance for the overall topology of the lattice, since they
guarantee that for ang the network is a small-world one.

In Fig. 5 we plot the mean number of connections be-
tween each two nodes of the network for two different values

this distribution changes if the long-range connections ar@f @ (¢=1.5 anda=5) and for the two valuesm=1 and

penalized. In Fig. 2 we plot the probability distribution lof

m=3 as a function of the network siZd. The algorithm

for different values ofe on double logarithmic scales. One Nere is trivial: starting from a nodéabeled 0 we pass to all
readily infers that for all 8 @<1 no important differences nodes connected to {hodes of the first generation, labeled

with the scale free modela(=0) can be detected: in any
case the asymptotic behavior Bik) is well described by

1), then to nodes of the second generatitaibeled 2, etc.,
untill all nodes are labeled. The mean distance between this

P(k)~k 2. The distributions seem to be almost identical; "°d€(labeled 0 and any other given node of the network is
however, small, but statistically significant, deviations can bdh€n the sum of all values of these labels dividedN\by 1.

detected for smalk values. Ata=1 the degree distribution

This procedure is repeated for each node, and the overall

shows a pronounced change in its behavior and ceases beififfan value, the so-called path diameter of the netwgrkg
a power law; now the behavior of the model with distanceevaluated' The error bars of the figure correspond to the av-

penalties is quite different.

Let us concentrate on the caae-1 and try to describe
the shape of the degree distribution under such condition
The analysis of the simulations suggests that the correspon

erage of the mean diameters over ten realizations of the net-
work. Figure 5 shows that the mean diameter of the network

grows linearly in I\, i.e., it shows the typical small-world

Rehavior. This behavior is preserved for all tested values of

ing mathematical expression could be a stretched® the largest value tested was=45, which, form=1,

exponential function of the form

P(k)=aexp —bk?),

)

where the parametes b, and y depend ona andm. To

corresponds to a practically sure connection of a newly in-
troduced node to its nearest neighbor. The highetworks
closely resemble the simple small-world constructifi26).

Let us summarize our findings. We considered a growing
network, whose growth algorithm is based, as in the SF con-
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struction, on a preferential attachment of the newly intro- We note that a similar model was considered by Manna
duced nodes to the highly connected old ones. However, hewnd Sen[27]. However, more attention was payed to two-
the too long connections are disadvantaged by introducindimensional systems and to other properties of the network
penalties. Thus, the probability to connect two nodes sepahan to those discussed here.

rated by a distance is proportional tod™“, wherea is a The authors are grateful to F. Jasch for fruitful discussions
variable parameter. We found out that fer<1 the degree and to M. Obermayr for the valuable technical assistance.
distribution P(k) decays, as in the SF model, &)  Financial support by the Fonds der Chemischen Industrie is
~k~%, whereas fora>1 a stretched exponential form gratefully acknowledged. We are grateful to the authors of

P(k) =aexp(-bk’) gives an extremely good description of [27] for bringing this work to our attention prior to publica-
this distribution. On the other hand, the small-world property;jq.

is preserved at all checked valuesaf
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