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Evolving networks with disadvantaged long-range connections

R. Xulvi-Brunet1 and I. M. Sokolov1,2

1Institut für Physik, Humboldt Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany
2Theoretische Polymerphysik, Universita¨t Freiburg, Hermann Herder Strasse 3, D-79104 Freiburg, Germany

~Received 7 May 2002; published 26 August 2002!

We consider a growing network, whose growth algorithm is based on the preferential attachment typical for
scale-free constructions, but where the long-range bonds are disadvantaged. Thus, the probability of getting
connected to a site at distanced is proportional tod2a, wherea is a tunable parameter of the model. We show
that the properties of the networks grown witha,1 are close to those of the genuine scale-free construction,
while for a.1 the structure of the network is quite different. Thus, in this regime, the node degree distribution
is no longer a power law, and it is well represented by a stretched exponential. On the other hand, the
small-world property of the growing networks is preserved at all values ofa.
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Complex weblike structures~the small-world or scale-free
networks! have recently become an object of extensive
vestigation, and in recent years great success in unders
ing the properties of these structures has been achieved~see
Refs.@1,2# for a review!. Apart from appealing mathematic
this recent interest is due to the fact that many natural
technological systems, such as polymer networks@3#, the
science collaboration network@4–6#, and networks of
chemical reactions in a living cell@7–9# seem to be orga
nized according to some internal principles. Thus, the In
net @10#, the network of human sexual contacts@11#, and the
WWW @12# possess similar structures, e.g., they are all ba
on the preferential attachment of the newly introduced no
to the highly connected old ones. All these networks sh
the small-world property: the typical distance~in terms of the
number of intermediate connections! between two nodes
grows logarithmically with the web’s size.

One of the prominent examples of a mathematical mo
of such a growing network is the scale-free~SF! construction
of Albert and Baraba´si @1,2,13#; and one of its most interest
ing properties is the very specific form of the probabil
distribution of the degreeki of nodes~i.e., of the number of
bonds connecting any given nodei with other ones in the
network!: P(k)}k23 @1,2,13–16#. Many models have bee
presented, based on the same two most important ingr
ents: growth and preferential attachment. Examples are m
els with an accelerated growth of the network@17,18#, mod-
els with a nonlinear preferential attachment@16#, with nodes
provided with an initial attractiveness@14,19#, with growth
constraints as aging and cost@20,21#, models that have a
competitive aspect of the nodes@22#, or models of networks
that incorporate local events as the addition, rewiring, or
moval of nodes or edges@23#.

The SF construction may be a reasonable approxima
for such world-spanning networks such as one of the In
net’s information transmission channels or one of the form
links of the WWW. On the other hand, in many situations~as
in a network of human sexual contacts! a connection mean
a physical contact, i.e., that the contacting individuals, r
resenting the nodes of the network, have to occur at the s
site and at the same time, thus introducing a clear geogra
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cal aspect. In what follows, we present a simple model t
ing into account this metrical~geographical! aspect, where
the probability of connecting two nodes depends both on
number of connections that the nodes already have~as in the
genuine SF construction!, and on the distance between the
That is, we treat an emerging network in a metric space
this emerging network the probability that a newly intr
duced noden is connected to a previously existing nodei is
proportional to the numberki of the already existing connec
tions of nodei ~preferential attachment prescription!, but, on
the other hand, the too long bonds are disadvantaged,
cause this probability depends on the Euclidean distancedin

between the nodesn and i as din
2a , ~clearly, a ‘‘scale-free’’

function!, with a.0.
Based on extensive numerical simulations of a o

dimensional situation, we show that even if the length p
alties are mild, the model exhibits properties that diff
strongly from those of the usual scale-free networks. Th
the corresponding degree distribution functionP(k) depends
strongly on a. We show, in particular, that fora,1 the
behavior ofP(k) is similar to the behavior of the SF mode
without penalties, so that asymptoticallyP(k)}k23 ~a distri-
bution that possesses a mean, but no dispersion, and c
sponds to strong, universal fluctuations!. On the other hand
for a.1 the behavior ofP(k) is well described by a
stretched exponentialP(k)}exp(2bkg), with the powerg
depending ona, so that the fluctuations ink are rather weak.
We discuss the reasons for such a dramatic change, b
rooted in the probability of the connection between the no
as a function of the distance, and the overall structure of
emerging network, preserving its small-world nature even
large ~probably at all! a values.

We start from a one-dimensional lattice ofL sites, spaced
by a unit distance, and apply cyclic boundary conditions.
will let our network grow on this structure, so that ea
lattice site will be a possible location of a network’s nod
We denote byni the position in the lattice of a nodei. The
distancedi j between any two nodesi and j is defined as

di j 5min$uni2nj u,~L2uni2nj u!%. ~1!
©2002 The American Physical Society18-1
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FIG. 1. Networks generated
using the simulation prescription
Eq. ~2!, with different values ofa:
~a! a50, ~b! a51.5, and~c! a
515. All three examples have 30
edges,L5106, N5105, and m
53. Note the change in the ap
pearance of the networks. The ne
work ~a! is a genuine SF construc
tion while ~c! strongly resembles
the Watts and Strogatz smal
world network.
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Let us now construct the network. First, we choose r
domly an even numberm0 of sites from the lattice and we
bind them in pairs with one bond each. This will be o
initial condition. That is, att50, our network will consist of
m0 nodes connected in pairs. As in the SF model, we w
add at every time step a new node to our network~linear
growth!. We proceed according to the following rule: at e
ery time step, we choose at random a free site of our latt
and pose the new node there. This new node is then
nected throughm edges (m<m0) with m different nodes
already present in the network. Aftert time steps the algo
rithm results in a network witht1m0 nodes andmt1m0/2
edges. In contrast with the SF model, the probabilityP for
the new noden to be connected to an old onei will depend
not only on the number of edgeski , which i already pos-
sesses, but also on the distancedin between them,

P~ki ,din ,a!5
ki•din

2a

(
j

kj•djn
2a

. ~2!

Here the sum in the denominator goes over all node
the system except the newly introduced one, anda is a real
non-negative parameter describing the distance penalties
largea, the probability of a connection between two dista
nodes is very small. On the other hand, for a very smalla the
probability is almost independent of the distance. In the c
a50, our model reduces to the genuine scale-free one. N
that our model is to some extent also scale-free: the con
tion probabilities depend only on therelative distances.

Our initial condition is slightly different from that o
Barabási and Albert, where the initialm0 nodes are not con
nected: in our case all nodes introduced att50 have exactly
one edge, which allows us to use Eq.~2! from the very be-
ginning. This simplifies the algorithm, since we do not ha
to distinguish between the initial and the further steps. T
only difference with the genuine SF construction is that
time t one hasmt1m0/2 ~instead ofmt) edges present
hence, the asymptotic behavior of both models fort→` is
the same.

Three examples of the evolving networks of this kind a
given in Fig. 1. Herem53, L5106, N5105, andm056 ~so
that all three networks have exactly 300 edges!. Three differ-
ent values ofa were used:a50.0 ~scale-free model!, a
51.5 anda515.0. Note that increasing the value ofa leads
to marked changes in the topology of the network. Fig
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1~a! corresponds to a genuine scale-free construction and
hibits a lot of long bonds connecting distant sites. On
other hand, only few such bonds are present in Fig. 1~c!.

In our further simulations we use a lattice ofL523107

sites; the maximum number of the introduced nodes isN
523105. All simulation results are based on the avera

FIG. 2. The degree distributionP(k) for different values ofa
and for m51 ~a! and m53 ~b!. The values ofa are a50
~squares!, a50.8 ~crosses!, a51.5 ~triangles!, a52 ~filled circles!,
a55 ~plusses!, and a545 ~diamonds!. The dashed lines corre
spond to the theoretical curve for the scale-free model,~Refs.
@1,2,13#!.
8-2
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FIG. 3. Shown is lnP(k) as a
function ofkg, whereg is the out-
put of the fit, Eq.~3! ~see text for
details!. The parameters are~a!
m51, a51.5, g50.37; ~b! m
53, a51.5, g50.33; ~c! m51,
a53, g50.69; ~d! m53, a53,
g50.64; ~e! m51, a510, g
51.07; and~f! m53, a510, g
50.96.
ig
u

l is
as a

site
ow
over ten realizations of this structure. The error bars on F
3–5 correspond just to this ensemble average. The sim
tions are done for several values ofa and for two values of
m, the number of the outgoing bonds:m51 andm53; m0
52m.
02611
s.
la-

One of the prominent features of the scale-free mode
that the distribution of the degrees of the nodes decays
power law, i.e., asP(k);k2g, with g53. This corresponds
to the fact that the mean number of connections per
exists, but its dispersion diverges. Let us discuss now h
a

FIG. 4. The parameterg as a function ofa.
The upper dependence corresponds tom51, and
the lower one tom53. The lines are drawn as
guide for eyes.
8-3
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this distribution changes if the long-range connections
penalized. In Fig. 2 we plot the probability distribution ofk
for different values ofa on double logarithmic scales. On
readily infers that for all 0,a,1 no important differences
with the scale free model (a50) can be detected: in an
case the asymptotic behavior ofP(k) is well described by
P(k);k23. The distributions seem to be almost identic
however, small, but statistically significant, deviations can
detected for smallk values. Ata.1 the degree distribution
shows a pronounced change in its behavior and ceases b
a power law; now the behavior of the model with distan
penalties is quite different.

Let us concentrate on the casea.1 and try to describe
the shape of the degree distribution under such conditio
The analysis of the simulations suggests that the corresp
ing mathematical expression could be a stretch
exponential function of the form

P~k!5a exp~2bkg!, ~3!

where the parametersa, b, and g depend ona and m. To

FIG. 5. The diameter of a network as a function of the num
of sites N. Panel~a! corresponds toa51.5 and panel~b! corre-
sponds toa55. The upper lines in each panel are those form51,
the lower lines correspond tom53. Note the logarithmic scale.
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obtain the values of these parameters and to analyze
goodness of this fitting function, we have fitted the data
Eq. ~3! using the nonlinear least-squares Levenbe
Marquardt algorithm@24#, taking into consideration the erro
bars as coming out of ten realizations of each situation. T
data is replotted together with the outcomes of the fits in F
3 on the scales in which the fitting function, Eq.~3!, is rep-
resented by a straight line. One takeskg as the abscissa an
ln P(k) as the ordinate of the graph. Figure 3 shows that s
a fit ~straight line! is surprisingly good.

The values of the exponentg are shown as a function o
a (a.1) in Fig. 4 for the two different situations corre
sponding tom51 andm53. We see thatg monotonically
grows with a, and that the dependences form51 and m
53 differ, i.e., theg(a) dependence is nonuniversal.

We note that in related models of growing networks a
other form of degree distribution appears: an exponenti
damped power law@25#,

P~k!5akgexp~2bk!. ~4!

We also tested this fit function and found out that it giv
a good fit for largera values, but is definitely inferior to ou
fit, Eq. ~3!, for 1,a,3.

A growing network with disadvantaged long bonds is
very interesting hierarchical construction. Thus, for largea,
the strong correlation between the age of the connection
its length exists. The old connections, made when the no
were sparse, are typically long, while the younger conn
tions get shorter and shorter, since more sites in the imm
ate vicinity of a newly introduced site can be found. T
simulations show that for a large value ofa, the nodes are
almost surely connected to their nearest neighbors. On
other hand, the old, long-range connections are of great
portance for the overall topology of the lattice, since th
guarantee that for anya the network is a small-world one.

In Fig. 5 we plot the mean number of connections b
tween each two nodes of the network for two different valu
of a (a51.5 anda55) and for the two valuesm51 and
m53 as a function of the network sizeN. The algorithm
here is trivial: starting from a node~labeled 0! we pass to all
nodes connected to it~nodes of the first generation, labele
1!, then to nodes of the second generation~labeled 2!, etc.,
untill all nodes are labeled. The mean distance between
node~labeled 0! and any other given node of the network
then the sum of all values of these labels divided byN21.
This procedure is repeated for each node, and the ove
mean value, the so-called path diameter of the network (l ), is
evaluated. The error bars of the figure correspond to the
erage of the mean diameters over ten realizations of the
work. Figure 5 shows that the mean diameter of the netw
grows linearly in lnN, i.e., it shows the typical small-world
behavior. This behavior is preserved for all tested values
a; the largest value tested wasa545, which, for m51,
corresponds to a practically sure connection of a newly
troduced node to its nearest neighbor. The high-a networks
closely resemble the simple small-world constructions@26#.

Let us summarize our findings. We considered a grow
network, whose growth algorithm is based, as in the SF c

r
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struction, on a preferential attachment of the newly int
duced nodes to the highly connected old ones. However,
the too long connections are disadvantaged by introduc
penalties. Thus, the probability to connect two nodes se
rated by a distanced is proportional tod2a, wherea is a
variable parameter. We found out that fora,1 the degree
distribution P(k) decays, as in the SF model, asP(k)
;k23, whereas fora.1 a stretched exponential form
P(k)5a exp(2bkg) gives an extremely good description
this distribution. On the other hand, the small-world prope
is preserved at all checked values ofa.
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We note that a similar model was considered by Man
and Sen@27#. However, more attention was payed to tw
dimensional systems and to other properties of the netw
than to those discussed here.
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Proc. Natl. Acad. Sci. U.S.A.97, 11149~2000!.

@21# S.N. Dorogovtsev and J.F.F. Mendes, Phys. Rev. E62, 1842
~2000!.

@22# G. Bianconi and A.-L. Baraba´si, Europhys. Lett.54, 436
~2001!.

@23# R. Albert and A.-L. Baraba´si, Phys. Rev. Lett.85, 5234~2000!.
@24# B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,Numerical

Recipes: The Art of Scientific Computing~Cambridge Univer-
sity Press, Cambridge 1985!, p. 675.

@25# M.E.J. Newman, e-print cond-mat/0201433.
@26# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440

~1998!.
@27# S.S. Manna and P. Sen, e-print cond-mat/0203216.
8-5


